
​

Kleros “Address Tag” Query List
Guidelines
Version 2.2.0

The “Address Tag” query registry is a collection of modules that can be used to dynamically
construct the Public Name Tags associated with ranges of contract addresses on
EVM-compatible chains. This complements the original ‘Address Tag’ registry for single entries,
and is meant to allow for large amounts of contract tags of a similar nature to be included in a
single entry. The data from these registries are then used by blockchain explorers and wallets to
provide contract insights for their users.

For brevity, some explanations in this document may refer to the Project Name and Public
Name Tag in a single string separated by a colon (e.g. “Curve.fi: CRV Token”), even though they
are two distinct fields in practice.

 ​ The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 ​ NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 ​ "OPTIONAL" in this document are to be interpreted as described in
 ​ RFC 2119.

A major issue is a bug, deficiency or vulnerability which:

-​ Prevents the application from operating as expected, or
-​ Carries a risk of security, privacy breach, financial loss, or harm for the user.

A minor issue is a bug, deficiency or vulnerability which:

-​ Does not prevent the application from operating as expected, and
-​ Does not carry a risk of security, privacy breach, financial loss, or harm for the user.

Elements Required for Submission
An entry into the list must be composed of :

Field Name Description Example

Github
Repository URL

The URL of the repository containing the
function that returns the Contract Tags. ​
The repository name must be in the
kebab case (hyphen-case).

●​ https://github.com/0xbuidl
er/uniswap-v3-lp-tags.git

●​ https://github.com/vbuteri
n/oz-erc721-tags.git

https://info.etherscan.com/public-name-tags-labels/
https://curate.kleros.io/tcr/100/0x66260C69d03837016d88c9877e61e08Ef74C59F2

​

Commit hash The hash of the specific commit for this

repository to be referenced.
●​ 3f4a02a
●​ c9dd0dc

Chain ID The integer EVM Chain ID of the chain of
the contracts being retrieved by the
function in this module.

●​ 1
●​ 137
●​ 100

Description A field used to describe the range of
contracts being curated here, specifying
(if applicable) the version, type and
purpose of the contracts that are
returned.

●​ The Uniswap v2 LP
contracts for Ethereum
Mainnet.

Module Acceptance Criteria
The criteria for a new retrieval module entry to be accepted in this registry are as follows:

●​ The module must make use of the data from the decentralized The Graph Network.

●​ Repository structure and guidelines:

○​ The easiest way to build a compliant repository is to clone the repository in the
Reference section below (caution: the code provided is just an example and does
not form part of this policy).

○​ Each repository should have one file named main.mts within the src/ folder as its
entry point. It must be written in Typescript and structured as an ES6 module.
The code must compile without error. It must not exceed 500 lines in length.

○​ The code must import and make use of the ContractTag and ITagService
interfaces in the NPM package ‘atq-types’.

○​ The code may use the NPM packages axios or node-fetch for data retrieval. No
other packages are allowed.

○​ Only Yarn may be used as package manager in the module (if needed).

○​ The code must not use ‘this’ to reduce complexity associated with potential
unexpected behavior when the code is imported and used in a different context.

○​ The module must export exactly one and only one function called returnTags,
which must:

■​ Be defined as async.

■​ Take in exactly two arguments.

https://thegraph.com/docs/en/network/overview/

​

●​ The first argument must be the Chain ID in integer form:

○​ The Chain ID must be explicitly handled. If the Chain ID is
not one that the function can handle, the function must
throw with the message ‘Unsupported Chain ID: [ChainID].’

●​ The second argument must be the API Key for the query service:

○​ API Keys must not be included in the code or pulled from
environmental variables, and must be provided to the
returnTags function.

■​ Return an array of ContractTags (e.g. Promise<ContractTag []’>).

■​ If there is any issue with the execution or the provided arguments, the
function must throw an Error and revert, instead of returning an array with
array/incomplete results or looping/hanging indefinitely.

■​ The ContractTags returned must be constructed dynamically using data
from the subgraph query responses and may not contain any hard coded
entries (as those belong in the original Address Tag Registry).

●​ It is not allowed to artificially limit or skip any of the entries
returned from the subgraph queries unless the entry contains data
that would lead to invalid entries. If so, indicate clearly in the
comments why a specific subset of the entries are skipped.

●​ Some contracts may be associated with two or more projects at
the same time (e.g. The contract for a Safe smart contract wallet is
designed by Safe, but created and used by another project). In
such cases, it is allowed to use any associated project as the
‘Project Name’, as long as all are mentioned in the ‘Public Note’.

●​ Some contracts may not be associated with any specific projects
at all (e.g. some ERC20/ERC721/ERC1155 tokens). In such
cases, the name of the token can be used as the project itself.

○​ The “User Interface /Website Link” field may be left as an
empty string if there is no feasible way to pull that
information for each and every contract in a trustless and
permissionless manner.

○​ Besides the pre-defined queries in the module and the usage of the API Key in
the authorisation header, the code must not store or send any additional
information to local or remote destinations.

https://curate.kleros.io/tcr/100/0x66260C69d03837016d88c9877e61e08Ef74C59F2

​

○​ It is strongly recommended to use ESLint for linting the code to maintain code

quality and consistency.

■​ Do note that this is a recommendation and that linting issues must not
result in a rejection of the entry.

○​ Every address tag returned by the returnTags function:

■​ must fulfill the requirements of the Address Tags Registry for individual
contracts at the time of submission.

●​ An ellipsis (‘...’) may be used to indicate that part of a field is
truncated in order to stay within the applicable length limits.

■​ must not have its contract address already be included in another entry in
this registry for the same chain.

●​ However, it is acceptable for contracts covered by an entry to be
already included in the original Address Tags Registry.

○​ The package.json file should have at least the following keys with these exact
values (for dependencies you may exclude axios or node-fetch if not used):

{

 …​
 "type": "module",​
 "main": "main.mjs",​
 "license": "MIT",​
 "dependencies":​
 {​
 "atq-types": "^1.1.5",​
 "axios": "^1.6.8",​
 "node-fetch": "^3.3.2"​
 },​
 "scripts":​
 {​
 "build": "tsc"​
 }

 …​
}

○​ The tsconfig.json file must be exactly this (excluding comments):

https://curate.kleros.io/tcr/100/0x66260C69d03837016d88c9877e61e08Ef74C59F2
https://curate.kleros.io/tcr/100/0x66260C69d03837016d88c9877e61e08Ef74C59F2

​

{​
 "compilerOptions":​
 {​
 "target": "ESNext",​
 "module": "NodeNext",​
 "moduleResolution": "NodeNext",​
 "types":​
 [​
 "node"​
],​
 "outDir": "./dist",​
 "esModuleInterop": true,​
 "forceConsistentCasingInFileNames": true,​
 "strict": true,​
 "skipLibCheck": true​
 }​
}

●​ Other requirements

○​ Each module must only be used to retrieve a specific category of contracts of a
specific protocol. Otherwise, a separate module must be created.

Examples:
●​ A module for retrieving all liquidity pool contracts for Uniswap v3 on Ethereum

Mainnet.
●​ A module for retrieving all ‘Light Curate’ contracts for Kleros Curate on Gnosis

Chain

○​ The endpoints used must point to one of the gateway endpoints of the

decentralized Graph Network (e.g.
https://gateway-arbitrum.network.thegraph.com/api/[api-key]/deployments/id/Qm
YayB5NBkDuGmgJNz1B9kH3ySYfA1iLBz8X8Jv8qcobSQ), which contains the
specific deployment ID.

■​ Only official subgraphs published on the official documentation of the
project in question. In the absence of that, subgraphs published by
Messari (i.e. subgraphs.messari.eth) and Builders DAO may be used.

https://gateway-arbitrum.network.thegraph.com/api/[api-key]/deployments/id/QmYayB5NBkDuGmgJNz1B9kH3ySYfA1iLBz8X8Jv8qcobSQ
https://gateway-arbitrum.network.thegraph.com/api/[api-key]/deployments/id/QmYayB5NBkDuGmgJNz1B9kH3ySYfA1iLBz8X8Jv8qcobSQ

​

■​ If the query is meant to query an ever-expanding number of contracts

(e.g. Kleros Curate contracts, DEX liquidity pool contracts), query
pagination must be used.

●​ If query pagination is used, only cursor-based pagination is
allowed.

■​ Be free of Major Bugs as defined in the preamble.

○​ New entries with the same repository URL and Chain ID can be accepted if it is a
commit hash that’s later than the existing one. Once accepted, it will be
considered to supersede earlier entr(ies) with the same repository URL and
Chain ID.

○​ Issues with the code that do not affect the correctness of the results returned for
the specific Chain ID in the submission in question are acceptable and must not
lead to the rejection of a submission.

Removal Request
A request to remove an accepted entry from the list can be made at any time by anyone
submitting a deposit.
​
To assist the jury, the removal requester should justify why the entry should be removed by
either:​

●​ Providing evidence that one of the above-cited acceptance criteria is not fulfilled by the
submission.

●​ Or explaining why a change in the underlying contract parameters or context justifies the
adjustment of any part of the tag submission in order to prevent potential user confusion.

In any case, if a challenge is raised, jurors are expected to review the entire code (i.e. main.mts)
for all possible issues, even if the issues were not explicitly raised by the challenger. This
supersedes court policies instructing jurors to refuse-to-arbitrate if a limited scope is not defined.

References

Custom helper GPT
Use this custom GPT to help you with checking and creating your module before submission: ​
https://chat.openai.com/g/g-fVvq1bQrb-kleros-atq-quick-check . Take note to do your own
additional checks as the results from the custom GPT is purely advisory.

https://chat.openai.com/g/g-fVvq1bQrb-kleros-atq-quick-check

​

Sample module
Check out the repository here for an example of how the module should be implemented:
https://github.com/gmkung/balancer-v2-pools-atq-module.git

https://github.com/gmkung/balancer-v2-pools-atq-module.git

	Kleros “Address Tag” Query List Guidelines
	Elements Required for Submission
	Module Acceptance Criteria
	Removal Request
	References
	Custom helper GPT
	Sample module

